Alan R. Duke at the Jamaica Beach Site 1962
Contents

Alan Robert Duke
Bruce Duke ... 1

Ellis, Ensor, and Palmillas Points in Southeast Texas
Leland W. Patterson .. 5

Historic Indian Sites in Southeast Texas
Leland W. Patterson .. 10

The Value of Surface Collections to Archeology
Leland W. Patterson .. 20

Houston Archeological Society
P.O. Box 6751, Houston, Texas 77265-6751

Officers 1998-1999
President: Joe Hudgins
Vice-President: Muriel Walker
Secretary: Robert Shelby
Treasurer: Linda Swift
Directors-at-Large: Bill Csanyi, Sue Hamblin, Bev Mendenhall

Membership, Meetings, and Publications
Membership in the Society is for the calendar year. Dues are as follows: Individual, $20; Family, $25; Contributing, $30 and above; Student, $10. Meetings are held the second Friday of every month except June at 7:30 PM in M.D. Anderson Hall at the University of St. Thomas. All members receive the Profile, issued monthly, and the Journal, published three times per year (student members do not receive the Journal). Contributors to the Journal should submit manuscripts to the Editor, Richard L. Gregg, at the Society address.

Copyright © 2001 by Houston Archeological Society. All rights reserved.
ISSN-8756-8071
Alan Robert Duke

Bruce Duke

Alan Robert Duke, chemical engineer, athlete, avocational archeologist, and a founder and charter member of the Houston Archeological Society, son of Harry T. and Edna (Stiles) Duke, was born on January 15, 1919, in Glenside, Montgomery County, Pennsylvania. His father, a mechanical engineer, lived in Philadelphia and worked in New York City. Duke attended Abington High School, excelling in academics and football. He graduated from high school at the age of sixteen in 1935. He then received a football scholarship to Chestnut Hill Academy in Philadelphia, which he attended for one year. In 1936 he was offered academic and athletic scholarships to Albright College in Reading, Pennsylvania. He accepted the football and track scholarship since it provided more money. Duke played quarterback, halfback, and defensive back, playing on offense and defense. His coach the first two years was Clarence "Biggie" Munn, who left to coach at Syracuse and later Michigan State. His next coach was William "Lone Star" Dietz, who played with Jim Thorpe at Carlisle Indian School and coached Washington State to the Rose Bowl. Duke graduated in 1940 near the top of his class with a B.S. in Chemistry and received the academic key for having the highest GPR in athletics. He was also a member of Who's Who among students in American Universities and Colleges, and was voted best all-around student at Albright College.

After graduation, Duke obtained a job with the Penn Salt Company. Six weeks later he was offered a chemical engineering position with Du Pont de Nemours, Inc., in Philadelphia. There he supervised the production of chemicals essential to the war effort during World War II. In 1941 Duke met and married his wife of fifty-seven years, Ruth H. Else, a secretary, who was born in LaMott, Pennsylvania. In later years, they occasionally corresponded with E. Mott Davis, archeologist with the University of Texas at Austin, concerning Prof. Davis' grandmother, Lucretia Mott, who had lived in LaMott. Alan and Ruth had two sons, Bruce and Gary. Both sons were also charter members of the Houston Archeological Society.

In 1947 Duke was transferred to the Houston area to help supervise the construction of DuPont's present La Porte, Texas, plant on Brinson Point. He remained at the La Porte plant in management until his retirement in 1980. He had a reputation for being a supervisor's supervisor and a super salesman. He belonged to the American Chemical Society and the American Institute of Chemical Engineers.

Duke quickly adjusted to Southeast Texas. He liked the lay of the land, the warm weather, and Texas history and prehistory. In 1959, along with several other avocational archeologists, Duke founded the Houston Archeological Society (HAS). He stayed in the Houston area (Pasadena) and developed and guided HAS longer than any of the other founders. Duke participated in considerable field work with HAS, which included projects in Liberty, Austin, Harris, and Galveston Counties. He was also a key member of the Lake Livingston Reservoir salvage archeology team. As he said later, "Not much was known about the prehistory of the Upper Texas Gulf Coast in the 1950s."

Duke served as Chairman (now called President) of the Houston Archeological Society in 1961-2 and again in 1964-5. During his first term, he handled the Jamaica Beach fiasco on Galveston Island. In 1965, he also became Editor of the HAS Newsletter, later renamed the Journal, and kept that position until 1986. During his twenty-one years of editorship, his wife Ruth diligently typed every issue. In addition, Duke was on the HAS Board of Directors for many years. He authored over forty HAS Journal articles. Duke also maintained long-time memberships with the Texas Archeological Society and the Southern Texas Archaeological Association.

In 1975 Duke was named a Life Member of HAS for his service as Journal Editor. He was honored with a special HAS award in 1986 for his long service as Journal Editor, and received
the Southeast Texas Archeological Research Award in 1991 for regional research on several topics, including pottery and Texas bannerstones.

Duke served on the HAS Awards Committee from its inception in 1989. Even after his health began to decline, he made a concerted effort to attend the annual awards presentation meetings. He continued to research and write archeological articles through 1992.

Perhaps Duke's contributions to archeology were best summarized by fellow Charter and Life Member Donald R. Lewis, who passed away in 1997, "Above all, Alan Duke has been dedicated to the task of the documentation and communication of information which he and other members of the Society have garnered." Duke died on May 20, 1998, due to complications resulting from diabetes.

Bibliography of Alan Robert Duke

Duke, A. R.
1960 Scratching at Smith Point. HASN 2
1961 Unusual Artifacts from Site 41AU1, Austin County, Texas. HASN 5
1962a Preliminary Report on the Damek Site, Liberty County, Texas. HASN 8:4
1964 A Pottery Bowl from Peggy Lake, Harris County, Texas. HASN 11:3
1965 Status of Site Surveys in the Livingston Reservoir Area. HASN 12:1
1966a Indians of the Trinity. HASN 16:3-5
1966b Wallisville Dig (41CH32, 41CH52, 41CH14). HASN 17:2
1967 Houston Lighting and Power Co. Site No. 1 - (41HR72). HASN 20:5-6
1970a Indian Artists of the Gulf Coast. HASN 31:3-7
1970b Analysis of Ceramic and Bone Artifacts from 41HR73 (Surface Collection). HASN 34:3-4
1970c Additional Examples of Incised Pottery (Houston Area). HASN 34:8
1971 Analysis of Lithic Material from 41HR73 (Surface Collection). HASN 36:3-6
1974a The East Bay Sites, Chambers County, Texas. HASN 44:8-10
1974b Artifacts from San Jacinto. HASN 45:4-7
1974c Another Artifact from San Jacinto. HASN 46:7
1974d A Harris County Shell Site. HASN 47:2

1974e A Clay Pipe from Peggy Lake (Harris Co., Texas). HASN 47:10

1975 Interior Incising in Pottery from Coastal Southeast Texas. HASN 48:2

1976a The “Shallow Lake” Sites – Chambers Co., Texas. HASN 51:2-4

1976b The “Shallow Lake” Sites – Chambers Co., Texas (Lake Surprise). HASN 54:9-11

1977 Site Survey on San Jacinto Bay, Harris County. HASN 58:7-8

1981a Status Report on the Muller Site (41HR74). HASN 69:3

1981b 41HR74 – A Harris County Shell Site on Lower San Jacinto Bay. HASN 70:18-30

1981-2 The Goebel Site (41AU1), An Archaic – Neo American Site in Austin County, Texas. HASN 71:1-4; HASJ 72:5-7, 73:22-25, 74:8-10

1983a Archeometry. HASJ 76:1

1983b HAS Constitution Revisions. HASJ 77:1

1984a White Oak Bayou Buffalo Kill Site (Harris Co., Texas). HASJ 78:1

1984b Historic Note No. 1. HASJ 78:8

1984c Archeological Activities of L. W. Patterson. HASJ 79:13

1984d Historic Note Number Two. HASJ 79:13

1985 Folsom or Clovis? HASJ 82:34

1986a HAS Historic Note Number Seven. HASJ 84:24-25

1986b HAS Historic Note Number Eight. HASJ 85:21-22

1986c HAS Historic Note Number Nine. HASJ 86:22

1987a HAS Historic Note Number Ten. HASJ 88:22

1987b HAS Historic Note Number Eleven. HASJ 89:21-22

1989 Additional Bannerstones from Texas. HASJ 95:12-15

1991 Another Bannerstone from Harris County, Texas. HASJ 100:6-7

1992 A Bannerstone from Montgomery County, Texas. HASJ 104:14-15

1979a The La Playa Ladosa Site, San Patricio County, Texas. HASN 64:6-9

1979b 41AS78 Revisited – 50 Years Later. HASN 65:14-16

1988 A Bannerstone from Austin County, Texas. HASJ 90:11-13

Duke, A. R., and F. G. Muller
1980 41HR74 – A Harris County Shell Site on Lower San Jacinto Bay. HASN 68:24-27

Duke, A. R., and Suzanne Patrick
1984 HAS Historic Note Number Three. HASJ 80:27

1985a HAS Historic Note Number Four. HASJ 81:35

1985b HAS Historic Note Number Five. HASJ 82:6

1985c HAS Historic Note Number Six. HASJ 83:33

Articles about Alan Robert Duke

Lewis, Donald R.
1986 In Appreciation of Alan R. Duke. HASJ 84:1

Gregg, Richard L.
1997 Alan Duke – A Tribute. HASJ 118:1

Abbreviations
HASJ Houston Archeological Society Journal (1982-)
Ellis, Ensor, and Palmillas Points in Southeast Texas

Leland W. Patterson

Introduction

This article presents data on Ellis, Ensor, and Palmillas dart points in Southeast Texas. Chronologies and geographic distributions are considered. These three dart point types are common in this region during the Late Archaic (1500 BC-AD 100) and Early Ceramic (AD 100-600) time periods, but are less numerous than Gary and Kent points (Patterson 1996: Table 8, n.d.).

It is not possible to find social relationships from dart point types used in Southeast Texas, because individual social groups cannot be identified (Patterson 1990). However, it is possible to study trends in geographic distributions of dart point types.

These dart point types have been described by Turner and Hester (1993) and Suhm and Jelks (1962). The Ellis point is a short corner-notched point with a wide, slightly expanding stem, triangular body, and often a relatively thick body (Turner and Hester 1993:113). The Ensor point has shallow side-notches, a broad stem, a triangular body, and a straight base (Turner and Hester 1993:114). There can be considerable variation in dimensions. The Palmillas point has slight to well-barbed shoulders formed by shallow side-notches (Turner and Hester 1993:167). The expanding stem and convex base give the stem a bulbar appearance. These three dart point types are usually made of local chert or petrified wood.

All data used here are from the 1998 updates of computerized data bases for the inland (Patterson 1989a) and coastal margin (Patterson 1989b) areas of Southeast Texas.

Chronologies

There are no radiocarbon dates for Ellis, Ensor, and Palmillas points in Southeast Texas, except for an Ensor point at 41FB3 in the Upper Burial Group, which has a radiocarbon date of 2580 BP, 630 BC (1-16513) (Patterson et al. 1998). However, stratigraphic sequences of excavated sites and the occurrences of these point types with or without pottery can be used to place all of these point types in both the Late Archaic (1500 BC-AD 100) and Early Ceramic (AD 100-600) periods (Patterson 1989c). As Shafer (1975) has noted, the introduction of pottery did not have a significant effect on other technological traits of the Indians of this region.

Geographic Distributions

Geographic distributions of Ellis, Ensor, and Palmillas points in Southeast Texas are given by county in Table 1. Maps of this region with geographic distributions by county are shown for Ellis (Figure 1), Ensor (Figure 2), and Palmillas (Figure 3) point types. Table 1 gives totals by county that include both inland and coastal margin areas.

Distributions of Ellis, Ensor, and Palmillas points are given in Table 2 for western, central, and eastern zones of Southeast Texas. Turner and Hester (1993:113) state that the main distribution of the Ellis point is in East Texas, but that it is occasionally found in South and Central Texas, and also in adjoining areas of Arkansas and Louisiana. As may be seen in Table 2 for the Ellis point, there is a decreasing trend from east to west in Southeast Texas.

Turner and Hester (1993:114) state that the Ensor point is widespread in Central and South Texas. It may be seen in Table 2 that the geographic distribution of the Ensor point continues into Southeast Texas with a fairly even distribution.
Turner and Hester (1993:167) state that the Palmillas point is found from East Texas onto the central coastal plain. It may be seen in Table 2 that there is a decreasing trend from east to west in Southeast Texas.

Data for these three dart point types at individual sites are available in the computerized data bases for inland (Patterson 1989a) and coastal margin (Patterson 1989b) areas of Southeast Texas. References for site reports can be obtained by using the site number cross-index in the bibliography for Southeast Texas (Patterson 1997).

It may be seen in Table 2 that Ellis, Ensor, and Palmillas points are concentrated in the central zone of the coastal margin, with no specimens in the western zone of the coastal margin, and only one Ensor point in the eastern zone of the coastal margin. Other types of dart points on the coastal margin, such as Gary and Kent, are also concentrated in the central zone, mainly in Harris County (Patterson n.d.: Table 4). Reasons for the selective concentration of dart points in the central zone of the coastal margin of Southeast Texas will be the subject of a separate study.

Summary

This article has presented data on the chronologies and geographic distributions of Ellis, Ensor, and Palmillas dart points in Southeast Texas. These three dart point types are common in this region during the Late Archaic and Early Ceramic periods, but are less numerous than Gary and Kent points.

Ellis and Palmillas points have decreasing frequencies from east to west in Southeast Texas. Geographic distribution of Ensor points in this region appears to be a continuation from Central Texas with not much dropoff in frequency across Southeast Texas, unlike some other Central Texas point types, such as the Pedernales point, which decrease in frequency to the east in Southeast Texas (Patterson 1996: Table 7).

A high concentration of dart points has been noted for the central zone of Southeast Texas on the coastal margin, compared to the western and eastern zones of the coastal margin. This will be the subject of a separate study.

References Cited

Aten, L. E.
1983 Indians of the Upper Texas Coast. Academic Press

Patterson, L. W.
1989a A Data Base for Inland Southeast Texas Archeology. Houston Archeological Society, Report No. 6
1989b An Archeological Data Base for the Southeastern Texas Coastal Margin. Houston Archeological Society, Report No. 7
1989c Chronological Placement of Late Archaic and Early Ceramic Dart Point Types in Southeast Texas. Houston Archeological Society Journal 94:14-15
1997 Bibliography of the Prehistory of the Upper Texas Coast, No. 10. Houston Archeological Society, Special Publication

Patterson, L. W., J. D. Hudgins, S. M. Kindall, W. L. McClure, M. Marek, T. Nuckols, and R. L. Gregg

Shafer, H. J.

Suhm, D. A., and E. B. Jelks
1962 Handbook of Texas Archeology: Type Descriptions. Texas Archeological Society, Special Publication No. 1

Turner, E. S., and T. R. Hester

Table 1. Distributions of Ellis, Ensor, and Palmillas Points by County

<table>
<thead>
<tr>
<th>county</th>
<th>Ellis sites</th>
<th>Ellis points</th>
<th>Ensor sites</th>
<th>Ensor points</th>
<th>Palmillas sites</th>
<th>Palmillas points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td></td>
<td></td>
<td>5</td>
<td>15</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Brazoria</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chambers</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Bend</td>
<td>9</td>
<td>19</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Grimes</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Hardin</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris</td>
<td>25</td>
<td>71</td>
<td>15</td>
<td>31</td>
<td>21</td>
<td>82</td>
</tr>
<tr>
<td>Jefferson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Jasper</td>
<td>2</td>
<td>33</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Liberty</td>
<td>11</td>
<td>36</td>
<td>9</td>
<td>31</td>
<td>11</td>
<td>32</td>
</tr>
<tr>
<td>Montgomery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Polk</td>
<td>7</td>
<td>38</td>
<td>5</td>
<td>14</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>San Jacinto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tyler</td>
<td>1</td>
<td>26</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Waller</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wharton</td>
<td>9</td>
<td>14</td>
<td>9</td>
<td>14</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Washington</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 2. Distributions by Zone of Ellis, Ensor, and Palmillas Points

<table>
<thead>
<tr>
<th>type</th>
<th>western</th>
<th>central</th>
<th>eastern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sites</td>
<td>points</td>
<td>sites</td>
</tr>
<tr>
<td>Inland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellis</td>
<td>22</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Ensor</td>
<td>20</td>
<td>45</td>
<td>11</td>
</tr>
<tr>
<td>Palmillas</td>
<td>9</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Coastal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellis</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Ensor</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Palmillas</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellis</td>
<td>22</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>Ensor</td>
<td>20</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td>Palmillas</td>
<td>9</td>
<td>21</td>
<td>26</td>
</tr>
</tbody>
</table>

Figure 1. Distribution of Ellis Points by County
Figure 2. Distribution of Ensor Points by County

Figure 3. Distribution of Palmillas Points by County
Historic Indian Sites in Southeast Texas

Leland W. Patterson

Introduction

The archeological record for historic Indians in Southeast Texas is smaller than available data for prehistoric Indians. There are several reasons for this situation. The time period for historic Indians in this region is relatively short, compared to the prehistoric period. The period of historic Indians is slightly over 300 years (AD 1500-1800+), while the period for prehistoric Indians is over 11,000 years (10,000 BC-AD 1500). Therefore, the historic Indian archeological record would be expected to be much smaller than the prehistoric record. The sharp decline in Indian population after AD 1700 (Aten 1983), due to disease and other effects of European contact, lowered the Indian population density, with a corresponding decline in number of occupation sites. Also, historic Indian sites can be difficult to detect (Patterson 1993). For example, sites 41HR206 (Patterson 1994) and 41WH19 (Patterson et al. 1987) can be placed in the period of historic Indians only by radiocarbon dates. There is no evidence at these sites of Euro-American types of artifacts or types of historic Indian arrow points.

The time period for historic Indians can be divided into a Proto-Historic period (AD 1500-1700) and a Historic Indian period (AD 1700-1800+). The Proto-Historic Indian period in Southeast Texas had only a small amount of European contact with Indians, after European discovery of the New World. After AD 1700, there was much greater contact between Indians and Europeans, especially after the start of the fur trade (Aten 1983:322), and establishment of Spanish presidios (Tunnell and Ambler 1967).

With a few exceptions, historic Indian sites in Southeast Texas are not well connected with the ethnographic record (Story 1990:258). It is difficult to relate the ethnographic record to specific Indian groups, because of historic movements and restructurings of social groups. Aten (1983:Figure 3.1) shows reconstructed territories of native groups in Southeast Texas in the early eighteenth century, including Coco (Karankawa?), Tonkawa, Bidai, Akokisa, and Atakapa. There are not enough data, however, to assure precise details on this subject. As discussed below, the Coco may not have been on the western coastal margin of Southeast Texas.

European settlement of Southeast Texas did not seriously disrupt the lifeway of Indians until after AD 1700. The first half of the eighteenth century was the period in which the fur trade and Spanish mission system, as well as epidemic diseases, began seriously to disrupt and stress the native cultural and social systems (Aten 1983:322). By the time that heavy settlement of Texas began in the early 1800s, the Indian population was already greatly diminished. The Alabama-Coushatta Indians in Southeast Texas are migrants, displaced from the east, without relations to indigenous prehistoric groups (Newcomb 1961:25).

This article discusses historic Indian sites of the inland and coastal margin parts of Southeast Texas. The coastal margin part of this region is a zone about 15 miles (24 km) wide from the Gulf shoreline. Consideration is also given to the lack of evidence for much presence of Karankawa Indians in Southeast Texas. More details on the historic record of Indians in Southeast Texas may be obtained from Newcomb (1961), Aten (1983), and Ricklis (1994).

Inland Sites

The distribution of historic Indian sites in Southeast Texas is shown in Figure 1. Inland historic Indian sites are listed in Table 1, and historic Indian radiocarbon dates for inland sites are given.
in Table 2. There are 29 historic Indian sites in the inland part of Southeast Texas, in Austin (1), Brazoria (1), Fort Bend (2), Grimes (1), Harris (8), Jefferson (1), Montgomery (1), Polk (3), San Jacinto (2), and Wharton (9) Counties.

Sites 41HR206, 41PK8, and 41WH19 have historic Indian components based on radiocarbon dates. Most sites in Southeast Texas with historic Indian components also have prehistoric components, although specific historic Indian groups cannot be related to prehistoric groups by use of the ethnographic record. Other historic Indian sites shown in Table 1 are distinguished by Euro-American type artifacts and materials or historic types of arrow points.

At historic Indian site 41WH8 (Hudgins 1984), there were both historic types of arrow points and Euro-American types of artifacts and materials. Arrow point types include Guerrero, Fresno, Cuney, and Bulbar Stemmed. Turner and Hester (1993) place Guerrero arrow points in the eighteenth century, but place Cuney and Bulbar Stemmed points in both the Late Prehistoric and Historic periods, and place Fresno points in the Late Prehistoric period. In Southeast Texas, however, all of these arrow point types may be generally related to historic Indians, based on data from site 41WH8. Indian artifacts made of European materials at 41WH8 include an iron keyhole escutcheon made into a projectile point, and tools made of glass instead of chert. A Spanish silver coin was found with a date of AD 1738. Fragments of European type clay pipes were also found at this site. A ceramic loop handle from Indian pottery appears to be another diagnostic trait for historic Indians.

Historic type arrow points were found at other sites, including Bulbar Stemmed at 41WH74, Bulbar Stemmed and Cuney at 41BO167, Guerrero and Cuney at 41FB251 and 41WH16, and Guerrero at 41HR182 and 41HR624. Cuney arrow points were also found at sites 41PK88, 41SJ160, and 41WH5. Sites with Fresno arrow points that may represent historic Indians include 41AU1, 41FB200, 41HR6, 41HR89, 41HR293, 41SJ163, and 41WH14. Other sites were identified as having historic Indian components by clay pipe fragments, tools made of glass, glass beads, metal items, and gunflints.

In addition to historic Indian sites listed in Table 1, there are early nineteenth century Alabama-Coushatta historic Indian sites in the northern part of Southeast Texas that have a variety of Euro-American trade goods (Perttula 1992:23, 1994).

Coastal Margin Sites

Coastal Margin historic Indian sites are listed in Table 3, and radiocarbon dates for coastal margin sites are given in Table 4. There are 24 historic Indian sites in the coastal margin part of Southeast Texas, in Brazoria (2), Chambers (16), Galveston (4), Harris (1), and Liberty (1) Counties.

A high proportion of historic Indian sites on the coastal margin are in the Galveston Bay area. Many of these sites reflect the European activities in this area during the eighteenth century. Fullen (1978) has described the El Orcoquisac Archeological District in the Galveston Bay area as follows: 41CH57 includes Joseph Blanchpain's trading post, Village de Atakapas (1754), the first location of the Spanish Presidio San Agustin de Ahumada (1756-1766), and the first location of Mission Nuestra Senora de La Luz (1759-1771), and 41CH22 is the Orcoquisac Rancheria associated with the mission. Site 41CH53 is the second location of the presidio. Many other historic Indian, Spanish, and French sites mentioned in the historic record have not yet been located.

Eight of the coastal margin historic Indian sites are listed as research estimates (RE). This means that the investigators felt that these sites probably had a historic Indian component because of details such as pottery type sequences. Therefore, only 16 of the 24 sites listed in Table 3 can be firmly placed in the Historic Indian period.
Types of artifacts at coastal margin sites used to distinguish historic Indian components include glass beads, gunflints, French gun parts, European type metal artifacts, and ceramic loop handles on Indian pottery.

Euro-American items were used as grave goods for historic burial groups at site 41GV66 (Ricklis 1994), including glass beads, a brass bell, iron tool fragments, and flat glass. Glass trade beads are generally assignable to the early to mid-eighteenth century in Southeast Texas, with little prior European contact in this region.

Karankawa Indians

Karankawa Indians are known from the Late Prehistoric and Historic Indian periods on the central Texas coastal margin (Ricklis 1996). Aten (1983:Figure 3.1) places Karankawa Indians of the Coco tribe on the coastal margin of Southeast Texas as far east as the western part of Galveston Island. In contrast, Ricklis (1996:5) places the Coco Indians farther west at the mouths of the Colorado and Brazos Rivers. The scarcity of Rockport pottery, associated with the Karankawa, east of the Brazos River is consistent with Ricklis' placement of the Coco Indians farther west than the coastal margin of Southeast Texas.

The distribution of Rockport pottery in Southeast Texas is shown in Table 5. There are only small amounts of Rockport pottery at sites, except for site 41WH8 in Wharton County. Inland site 41WH8 may represent the movement of Karankawa farther inland to avoid European pressures, or the formation of a composite social group at this inland location. Gatschet (1891) does not note any Karankawa historic sites as far inland as Wharton County, although he does note a Karankawa site somewhat inland on Caney Creek in Matagorda County, south of Wharton County. Gatschet (1891) does not note any historic Karankawa sites east of the San Bernard River.

Data on the distribution of Rockport type pottery suggests that there was a rather late movement of some individuals of Karankawa affiliation to the coastal margin of Southeast Texas. The modest amount of Rockport pottery at site 41GV66 on Galveston Island (Ricklis 1994) may represent Karankawa Indians joining composite social groups after rapid population decline in the early eighteenth century. Studies of human remains at site 41GV66 also show that there was a composite social group at this site in historic time. Rockport pottery at 41CH110 (Gilmore 1974:59) may also represent late movement of Karankawa to the coastal margin of Southeast Texas. Aside from sites 41CH110, 41GV66, and 41WH8, Rockport pottery is present only in insignificant quantities at sites in Southeast Texas.

Summary

This article has presented data on historic Indian sites in Southeast Texas. There are 29 inland historic Indians sites, 16 coastal margin historic Indian sites that can definitely be identified, and 8 coastal margin sites that may contain historic Indian components. The small number of historic Indian sites found in this region may be due to low population density after European contact, and perhaps also due to the difficulty in identifying historic Indian sites if no Euro-American type artifacts are present (Patterson 1993), especially in the Proto-Historic period (AD 1500-1700).

The Galveston Bay area is an important center for historic Indians, because of Spanish and French activities in this area. Site 41GV66 has evidence that Karankawa Indians were part of a composite social group, possibly caused by the rapid population decline after European contact. As noted above, there is little evidence of any major occupation of the western part of the coastal margin of Southeast Texas by Karankawa Indians.
References Cited

Ambler, J. R.
1970 Additional Archeological Survey of the Wallisville Reservoir Area, Texas. Texas Archeological Salvage Project, Report No. 6

Aten, L. E.
1971 Archeological Excavations at the Dow-Cleaver Site, Brazoria County, Texas. Texas Archeological Salvage Project, Research Report No. 3
1983 Indians of the Upper Texas Coast. Academic Press

1976 Excavations at the Harris County Boys' School Cemetery. Texas Archeological Society, Special Report No. 3

1987 Buried in the Bottoms: The Archeology of Lake Creek Reservoir, Montgomery County, Texas. Texas Archeological Survey, Research Report No. 97

Duke, A. R.

Ensor, H. B.
1995 Archeological Test Excavations at Four Shell Midden Sites in the Wallisville Lake Project Area, Chambers and Liberty Counties, Texas. Geo-Marine, Inc., Wallisville Lake Project Technical Series, Reports of Investigations No. 2

Ensor, H. B., and D. L. Carlison
1988 The Crawford Site (41PK69), Central Trinity River Highlands, Polk County, Texas. Texas State Department of Highways and Public Transportation, Contract Reports in Archeology No. 4

Fullen, W. L.

Gatschet, A. S.

Gilmore, K.

Hudgins, J. D.

Hudgins, J. D., and S. M. Kindall

Keller, J. E., and F. A. Weir
Kindall, S. M.

Kindall, S. M., and L. W. Patterson

McClurkan, B.

McClure, W. L.
1977 Site 41HR89: Lithics. Houston Archeological Society Newsletter 55:9-17

Moore, R. G., L. W. Ellis, L. S. Zimmerman, W. L. McClure, and S. Aronow

Newcomb, W. W., Jr.
1961 The Indians of Texas. University of Texas Press

Patterson, L. W.
1985 A Long Occupation Sequence at Site 41HR182, Harris Co., Texas. Houston Archeological Society Journal 81:1-20
1986a Additional Data from Site 41HR293, Harris Co., Texas. Houston Archeological Society Journal 86:11-13
1986b Site 41HR571, A Long Prehistoric Sequence in Harris Co., Texas. Houston Archeological Society Journal 85:15-18
1986c The Walker Site (41SJ163), San Jacinto Co., Texas. Houston Archeological Society Journal 84:2-4
1997 The Wheeless Archeological Collections, Fort Bend County, Texas. Fort Bend Archeological Society, Report No. 4

Patterson, L. W., and J. D. Hudgins

Patterson, L. W., J. D. Hudgins, R. L. Gregg, and W. L. McClure
1987 Excavations at Site 41WH19, Wharton County, Texas. Houston Archeological Society, Report No. 4
Patterson, L. W., J. D. Hudgins, and W. L. McClure
1990 Prehistoric Site 41WH74, Wharton Co., Texas. Houston Archeological Society Journal 96:5-10

Patterson, L. W., J. D. Lockwood, R. L. Gregg, and S. M. Kindall
1992 The Lockwood Collection (41HR343), Harris Co., Texas. Houston Archeological Society Journal 104:16-24

Patterson, L. W., K. Marriott, and L. Marriott
1990 Site 41HR624, Another Long Occupation Sequence in Harris Co., Texas. Houston Archeological Society Journal 96:21-26

Patterson, L. W., and M. A. Marshall

Perttula, T. K.
1994 Material Culture of the Koasati Indians of Texas. Historical Archaeology 28(1):65-77

Powell, J. F., and J. A. Heubner
1989 Two Radiocarbon Dates from Human Remains at the Caplen Site, Galveston County, Texas. Texas Archeology 33(4):6-8

Ricklis, R. A.

Rogers, R.

Shafer, H. J., E. P. Baxter, T. B. Stearns, and P. Dering
1975 An Archeological Assessment of the Big Thicket National Preserve. Texas A&M University, Anthropology Laboratory, Research Report No. 19

Story, D. A.
1990 Cultural History of the Native Americans. In: D. A. Story et al., The Archeology and Bioarcheology of the Gulf Coastal Plain, pp. 163-366, Arkansas Archeological Survey Research Series No. 38

Tunnell, C. D., and J. R. Ambler

Turner, E. S., and T. R. Hester

Weinstein, R. A.
1991 Lido Harbor (41GV82): A Late Prehistoric Campsite and Extraction Locale, Galveston County, Texas. Coastal Environments, Inc.

Wheat, J. B.
Table 1. Historic Indian Sites, Inland

<table>
<thead>
<tr>
<th>site</th>
<th>historic items</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>41AU1</td>
<td>HAP</td>
<td>Duke 1982</td>
</tr>
<tr>
<td>41BO167</td>
<td>HAP</td>
<td>Patterson and Hudgins 1988</td>
</tr>
<tr>
<td>41FB200</td>
<td>HAP</td>
<td>Moore et al. 1996</td>
</tr>
<tr>
<td>41FB251</td>
<td>HAP</td>
<td>Patterson 1997</td>
</tr>
<tr>
<td>41GM281</td>
<td>CP</td>
<td>Rogers 1995</td>
</tr>
<tr>
<td>41HR6</td>
<td>HAP</td>
<td>Wheat 1953</td>
</tr>
<tr>
<td>41HR89</td>
<td>HAP</td>
<td>McClure 1977</td>
</tr>
<tr>
<td>41HR182</td>
<td>HAP</td>
<td>Patterson 1985</td>
</tr>
<tr>
<td>41HR206</td>
<td>HRD</td>
<td>Patterson 1994</td>
</tr>
<tr>
<td>41HR293</td>
<td>HAP</td>
<td>Patterson 1986a</td>
</tr>
<tr>
<td>41HR343</td>
<td>GA</td>
<td>Patterson et al. 1992</td>
</tr>
<tr>
<td>41HR571</td>
<td>GF</td>
<td>Patterson 1986b</td>
</tr>
<tr>
<td>41HR624</td>
<td>HAP</td>
<td>Patterson, Marriott, and Marriott 1990</td>
</tr>
<tr>
<td>41JF30</td>
<td>GF</td>
<td>Shafer et al. 1975</td>
</tr>
<tr>
<td>41MQ106</td>
<td>CP</td>
<td>Bement et al. 1987</td>
</tr>
<tr>
<td>41PK8</td>
<td>HRD</td>
<td>McClurkan 1968</td>
</tr>
<tr>
<td>41PK69</td>
<td>GB, CP</td>
<td>Ensor and Carlson 1988</td>
</tr>
<tr>
<td>41PK88</td>
<td>HAP</td>
<td>McClurkan 1968</td>
</tr>
<tr>
<td>41SJ160</td>
<td>HAP</td>
<td>Keller and Weir 1979</td>
</tr>
<tr>
<td>41SJ163</td>
<td>HAP</td>
<td>Patterson 1986a</td>
</tr>
<tr>
<td>41WH2</td>
<td>GA</td>
<td>Patterson 1980</td>
</tr>
<tr>
<td>41WH5</td>
<td>HAP</td>
<td>Patterson and Hudgins 1989c</td>
</tr>
<tr>
<td>41WH8</td>
<td>GA, MA, SPC, HAP, CP, CLH</td>
<td>Hudgins 1984</td>
</tr>
<tr>
<td>41WH12</td>
<td>GA</td>
<td>Patterson and Hudgins 1989a</td>
</tr>
<tr>
<td>41WH14</td>
<td>HAP</td>
<td>Hudgins and Kindall 1984</td>
</tr>
<tr>
<td>41WH16</td>
<td>HAP</td>
<td>Hudgins 1985</td>
</tr>
<tr>
<td>41WH19</td>
<td>HRD</td>
<td>Patterson et al. 1987</td>
</tr>
<tr>
<td>41WH40</td>
<td>GA</td>
<td>Patterson and Hudgins 1989b</td>
</tr>
<tr>
<td>41WH74</td>
<td>HAP</td>
<td>Patterson, Hudgins, and McClure 1990</td>
</tr>
</tbody>
</table>

CLH: ceramic loop handle HAP: historic arrow point
CP: clay pipe HRD: historic radiocarbon date
GA: glass artifact MA: metal artifact
GB: glass bead SPC: Spanish coin
GF: gunflint

Table 2. Historic Indian Radiocarbon Dates, Inland

<table>
<thead>
<tr>
<th>site</th>
<th>date, BP</th>
<th>lab no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>41HR206</td>
<td>280±80</td>
<td>I-18006</td>
</tr>
<tr>
<td>41PK8</td>
<td>390±100</td>
<td>TX-330</td>
</tr>
<tr>
<td>41WH19</td>
<td>365±80</td>
<td>SI-6455</td>
</tr>
</tbody>
</table>
Table 3. Historic Indian Sites, Coastal Margin

<table>
<thead>
<tr>
<th>site</th>
<th>historic items</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>41BO15</td>
<td>HRD</td>
<td>Aten 1983: Table 14.1</td>
</tr>
<tr>
<td>41BO35</td>
<td>RE</td>
<td>Aten 1971</td>
</tr>
<tr>
<td>41CH20</td>
<td>GB</td>
<td>Ambler 1970:29</td>
</tr>
<tr>
<td>41CH22</td>
<td>HR</td>
<td>Fullen 1978</td>
</tr>
<tr>
<td>41CH28</td>
<td>RE</td>
<td>Ambler 1970: Table 1</td>
</tr>
<tr>
<td>41CH37</td>
<td>RE</td>
<td>Ambler 1970: Table 1</td>
</tr>
<tr>
<td>41CH38</td>
<td>GF</td>
<td>Ambler 1970: Table 3</td>
</tr>
<tr>
<td>41CH51</td>
<td>RE</td>
<td>Ambler 1970: Table 1</td>
</tr>
<tr>
<td>41CH53</td>
<td>GB, HR, GF, HRD</td>
<td>Ambler 1970:29; Fullen 1978</td>
</tr>
<tr>
<td>41CH54</td>
<td>HR</td>
<td>Fullen 1978</td>
</tr>
<tr>
<td>41CH57</td>
<td>HR, GF</td>
<td>Ambler 1970: Table 3; Fullen 1978</td>
</tr>
<tr>
<td>41CH77</td>
<td>RE</td>
<td>Ambler 1970: Table 1</td>
</tr>
<tr>
<td>41CH98</td>
<td>RE</td>
<td>Ambler 1970: Table 1</td>
</tr>
<tr>
<td>41CH103</td>
<td>GB, GF</td>
<td>Ambler 1970:29, Table 3</td>
</tr>
<tr>
<td>41CH109</td>
<td>RE</td>
<td>Ambler 1970: Table 1</td>
</tr>
<tr>
<td>41CH110</td>
<td>HRD</td>
<td>Gilmore 1974</td>
</tr>
<tr>
<td>41CH119</td>
<td>RE</td>
<td>Ambler 1970: Table 1</td>
</tr>
<tr>
<td>41CH161</td>
<td>GB, FGP, CLH</td>
<td>Kindall and Patterson 1993; Kindall 1996</td>
</tr>
<tr>
<td>41GV1</td>
<td>HRD</td>
<td>Powell and Heubner 1989</td>
</tr>
<tr>
<td>41GV5</td>
<td>HRD</td>
<td>Aten et al. 1976:73</td>
</tr>
<tr>
<td>41GV66</td>
<td>GB, MA, HRD</td>
<td>Ricklis 1994</td>
</tr>
<tr>
<td>41GV82</td>
<td>HRD</td>
<td>Weinstein 1991</td>
</tr>
<tr>
<td>41HR618</td>
<td>HRD</td>
<td>Patterson and Marshall 1989</td>
</tr>
<tr>
<td>41LB4</td>
<td>GB, FGP, HRD</td>
<td>Aten 1983:268; Ensor 1995</td>
</tr>
</tbody>
</table>

CLH: ceramic loop handle HR: historic reference
FGP: French gun part HRD: historic radiocarbon date
GB: glass bead MA: metal artifact
GF: gunflint RE: research estimate
Table 4. Historic Indian Radiocarbon Dates, Coastal Margin

<table>
<thead>
<tr>
<th>site</th>
<th>date, BP</th>
<th>lab no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>41BO15</td>
<td>180±60</td>
<td>TX-1116B</td>
</tr>
<tr>
<td>41CH53</td>
<td>290±80</td>
<td>TX-458</td>
</tr>
<tr>
<td>41CH110</td>
<td>390±50</td>
<td>TX-2023</td>
</tr>
<tr>
<td>41CH110</td>
<td>410±60</td>
<td>TX-2026</td>
</tr>
<tr>
<td>41GV1</td>
<td>380±140</td>
<td>TX-6100</td>
</tr>
<tr>
<td>41GV5</td>
<td>450±110</td>
<td>Shell Dev. SB108</td>
</tr>
<tr>
<td>41GV5</td>
<td>430±150</td>
<td>Shell Dev. NA103</td>
</tr>
<tr>
<td>41GV66</td>
<td>203±70</td>
<td>TX-2598</td>
</tr>
<tr>
<td>41GV66</td>
<td>280±50</td>
<td>BETA-55867</td>
</tr>
<tr>
<td>41GV66</td>
<td>440±70</td>
<td>BETA-58746</td>
</tr>
<tr>
<td>41GV66</td>
<td>430±110</td>
<td>BETA-64563</td>
</tr>
<tr>
<td>41GV66</td>
<td>380±70</td>
<td>BETA-53672</td>
</tr>
<tr>
<td>41GV66</td>
<td>220±50</td>
<td>BETA-64566</td>
</tr>
<tr>
<td>41GV66</td>
<td>190±70</td>
<td>BETA-55870</td>
</tr>
<tr>
<td>41GV66</td>
<td>150±80</td>
<td>BETA-55865</td>
</tr>
<tr>
<td>41GV82</td>
<td>332±43</td>
<td>UGA-6229</td>
</tr>
<tr>
<td>41HR618</td>
<td>450±80</td>
<td>I-15275</td>
</tr>
<tr>
<td>41LB4</td>
<td>300±50</td>
<td>BETA-72730</td>
</tr>
<tr>
<td>41LB4</td>
<td>210±50</td>
<td>BETA-72738</td>
</tr>
</tbody>
</table>

Table 5. Rockport Sherds in Southeast Texas

<table>
<thead>
<tr>
<th>site</th>
<th>count</th>
<th>area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plain</td>
<td>coated</td>
</tr>
<tr>
<td>41BO2</td>
<td>1</td>
<td>coastal margin</td>
</tr>
<tr>
<td>41BO167</td>
<td>10</td>
<td>inland</td>
</tr>
<tr>
<td>41CH38</td>
<td>2</td>
<td>coastal margin</td>
</tr>
<tr>
<td>41CH110</td>
<td>465</td>
<td>coastal margin</td>
</tr>
<tr>
<td>41FB42</td>
<td>2</td>
<td>inland</td>
</tr>
<tr>
<td>41GV66</td>
<td>186</td>
<td>coastal margin</td>
</tr>
<tr>
<td>41HR5</td>
<td>1</td>
<td>inland</td>
</tr>
<tr>
<td>41HR729</td>
<td>1</td>
<td>inland</td>
</tr>
<tr>
<td>41LB2</td>
<td>5</td>
<td>inland</td>
</tr>
<tr>
<td>41MQ6</td>
<td>1</td>
<td>inland</td>
</tr>
<tr>
<td>41WH18</td>
<td>4800</td>
<td>3200</td>
</tr>
<tr>
<td>41WH12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41WH16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41WH19</td>
<td>35</td>
<td>9</td>
</tr>
</tbody>
</table>
Figure 1. Historic Indian Sites in Southeast Texas
(numbers in parentheses are coastal margin sites)
The Value of Surface Collections to Archeology
Leland W. Patterson

Introduction

Many archeologists seem to put value only on data from excavated sites, ignoring data from surface collections at archeological sites in the same area. In Southeast Texas, a high proportion of archeological data is from surface collections. Therefore, syntheses for this region would be more impressionistic than rigorous if data from surface collections were not used.

Data from surface collections are most valuable when published. A published collection has an interpretation by the author, and can be referenced. Unpublished surface collections reported to the Texas Archeological Research Laboratory for state records usually have limited value because reports to record sites have been made with minimum detail. There are many published surface collections from archeological sites in Southeast Texas, often representing long occupation sequences, such as from Paleo-Indian through Late Prehistoric time periods. The series of surface collections published by Bill McClure for White Oak Bayou in Harris County is a good example, with references available in the regional bibliography of Southeast Texas (Patterson 1997a).

Use of data from surface collections for regional studies can be difficult when large numbers of sites have been published, such as in Southeast Texas. This problem has been resolved for Southeast Texas by the availability of substantive computerized data bases for the inland (Patterson 1989a) and coastal margin (Patterson 1989b) parts of the region. Computerized data bases for Southeast Texas can also be used for sophisticated bibliographic searches. After state site numbers have been identified from a data base query, the site number cross-index of the regional bibliography (Patterson 1997a) can be used to obtain site report references. All sites in the computerized data bases have published references.

This article discusses uses of data from surface collections and methods of finding sites. The purpose of this article is to encourage more use of data from surface collections, and to encourage more avocational archeologists to make surveys to find and publish new sites.

Uses of Data from Surface Collections

Data from surface collections are most useful when regional chronologies for artifact types are available. In Southeast Texas, chronological sequences are available for projectile point types (Patterson 1995:Table 3, 1996a:Table 4) and pottery types (Aten 1983:Figure 14.1). Artifact types, such as projectile points, from surface collections can be placed in known chronological sequences to provide more data on technological trends in a region. For many types of studies, technological trends over long time periods are more important than narrow chronological placement of artifact types.

Along with data from excavated sites, data from surface collections can be used for several types of studies, such as geographical and temporal distributions of artifact types, settlement patterns, and population dynamics. Some artifact types in Southeast Texas are known only from surface collections, such as the Clovis point (Patterson 1996b) and the Albany scraper (Patterson 1997b). The Late Archaic Mortuary Tradition of the western part of inland Southeast Texas is defined by data from both excavated sites and surface collections (Patterson et al. 1998:Table 1).

Data from surface collections are especially useful for regional studies. Archeologists have a tendency to do regional studies by using data from key excavated sites. When data from surface collections are considered, more sites and artifact types are included in the analyses.
collections are also used, however, study results are more conclusive, because a larger data base
has been used.

Surface survey is the main method of locating sites for subsequent excavation. All of the ex-
cavations of prehistoric sites by the Houston Archeological Society have been done on the basis of
prior surface surveys. Surveys by Joe Hudgins in eastern Wharton County and western Fort Bend
County are good examples of work that has led to many excavation projects.

Publication of surface collections made by people who are not members of an archeological
society is an important activity of the Houston and Fort Bend Archeological Societies in Southeast
Texas. For example, much of the archeological data for the eastern part of inland Southeast Texas
is from the publication of the extensive Andy Kyle collections (Kindall and Patterson 1986).

It is especially important for avocational archeologists in Southeast Texas to publish surface
collections. In this era of CRM archeology, professional archeologists seldom publish surface col-
lections that are not directly involved in their survey work of limited, defined areas. Over 3300
archeological sites have been recorded in Southeast Texas, but only about 14% of the sites have
been published (Patterson 1995: Table 1).

Finding Archeological Sites

One of the purposes of this article is to encourage more avocational archeologists to find archeo-
logical sites for recording in state records and then publication of data. Individuals without survey
experience may have questions on how to find archeological sites.

Archeological sites can occur anywhere, but are more likely to be found near sources of water,
such as creeks, bayous, lakes, and rivers. I have used old USGS quad maps to find locations of
streams where there is no longer flowing water. USGS quad maps are also useful to locate topo-
graphic features, such as high points on flood plains, where sites are likely to be found. The Texas
Archeological Research Laboratory uses USGS quad maps for recording of site locations.

Archeological materials are usually on the soil surface due to natural erosion and soil distur-
bance by animals or modern construction. Types of archeological materials are usually lithic flakes,
stone tools, potsherds, pieces of mollusk shell, or pieces of bone. Soil disturbance by animals is
commonly from gophers and armadillos. Soil disturbance by ants can also result in small pieces
of archeological materials being deposited on the surface. Many sites in Southeast Texas have
been found due to disturbances from modern construction. Plowed fields are another type of soil
disturbance.

Members of the Houston Archeological Society have recorded hundreds of archeological sites in
Southeast Texas. Good examples are surveys by Joe Hudgins in Wharton and Fort Bend Counties,
surveys by Bill McClure in Harris County, and surveys on the coastal margin by Richey Ebersole.
It is important for new generations of the Houston Archeological Society to continue this type of
work. Archeological data are a non-renewable resource which is rapidly being lost due to modern
activities and natural erosion. Data from a surface collection is often the only record available for
an archeological site.

Summary

This article has discussed the importance of surface collections for archeological research, espe-
cially in Southeast Texas. Regional studies can only be most complete if data from excavated sites
and surface collections are both used. Avocational archeologists in Southeast Texas have found
and recorded a large number of archeological sites, and have done a high proportion of published
surface collections in this region. Many of the data for prehistoric settlement patterns in Southeast
Texas are from surface collections at archeological sites. Some artifact types are known only from surface collections.

It is hoped that more members of the Houston Archeological Society will do surveys to find archeological sites, and will publish surface collections from sites found by themselves and others.

References Cited

Aten, L. E.
1983 Indians of the Upper Texas Coast. Academic Press

Kindall, S. M., and L. W. Patterson
1986 The Andy Kyle Archeological Collection, Southeast Texas. Houston Archeological Society Journal 86:14-21

Patterson, L. W.
1989a A Data Base for Inland Southeast Texas Archeology. Houston Archeological Society, Report No. 6
1989b An Archeological Data Base For the Southeastern Texas Coastal Margin. Houston Archeological Society, Report No. 7
1997a Bibliography of the Prehistory of the Upper Texas Coast, No. 10. Houston Archeological Society, Special Publication

Patterson, L. W., J. D. Hudgins, S. M. Kindall, W. L. McClure, M. Marek, T. Nuckols, and R. L. Gregg